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What is a Data Scientist?

\What We Are Not
What We Are:

Communication

Data Mining Statistics &
Mathematics
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https://www.youtube.com/watch?v=uVD3KPUnKHk

Where We Are In The Process

Problem Agreement
Gaps Analysis
EDA/Statistical Modeling

Change Management**
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Where We Are In The Process

EDA/Statistical Modeling
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Describing Data — Probabilistic Distributions

General Properties of Distributions

1) ip(xi) =1
i=1

2) 0<PX)<1Vii=1,..,n

Example:

|

Function Support
(Outputs Probability)
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Describing Data — Probabilistic Distributions

Discrete vs Continuous Distributions:

Discrete Continuous
Definition Takes specific Takes values in
values an interval
Support x=1,3 1<x<3
x=0,1,2,3,... 0 <Xx<o(Xx€ER) Hypothesis
Finding Sum the Take the area Tests Utili
Probabilities probabilities of under the curve €s S. llze
the x values between the two Continuous
satisfying the points Distributions
inequality
Examples - Previous Slide - Normal Dist'n
- Binomial Distn - T Dist'n
- Uniform
Distribution
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Describing Data — Probabilistic Distributions

Examples of Symmetric
Distributions:

Normal

" y)
Distribution S G

t
Distribution

X~t,
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Hypothesis Testing Theory

Conclusion: If probability “low”, yet we did
observe it, then null hypothesis cannot be true

Calculation: Calculate theoretical probability of
observing what you did

Observation: Observe Real Data

Base Assumption: The null hypothesis is
true
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Hypothesis Testing Theory - Components

1. Null and alternative hypothesis
H,: typically the “status quo” (null)
H,: what you’d like to test (alt)

2. Observed Test Statistic — calculated using test-
specific formula (usually t (t-dist’n) or z (normal dist’n))

3. Decision Rule — Based on p-value (the probability of
observing the data you did, or more extreme, given
that the null hypothesis is true)

P-value <.05 - Reject H,, conclude H,

P-value >.05 = Cannot reject H,, therefor cannot
conclude H,

4. Conclude in context
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1 Sample Inference — 1-Sample t and z tests

1-Sample z-test
Assumptions:
- One sample compared to known value
- Data approx. normal (qgnorm in R)
- Unknown u (mean)
- Known o?

Hy: p=5(po)

Hy:p+5
u>>5
u<5

Test Stat: z* = @ ~N(0,1)

Rejection Rule (in R):
1—pnorm(z+,0,1) if u>up
pnorm(z*,0,1) if u<upg
2(1 —pnorm(|z*]|,0,1) if u# uy
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1-Sample t-test
Assumptions:
-One sample compared to known value
- Data approx. normal (qgnorm in R)
- Unknown u (mean)
- Unknown o?

Hy: p=5(po)
Hy:p#+5
u>>5
u<>5
Test Stat: t* = @ ~t, 4
Rejection Rule (in R):
1-pt(t"',n—1)
2(1 —pt(Jt"],0,1)

if 1> no
if u<mp
if u+up




1 Sample Inference — 1-Sample t and z tests

Application — Quality Assurance
Philips produces 65W Dimmable LED Enerqgy Star Light Bulbs sold
at Home Depot. On the Home Depot site, they advertise the ‘life
hours” of each light bulb is 25000.

Philips Model #465996 %% (12)
w  65W Equivalent Soft White with Warm Glow BR30 Dimmable LED Ene... *13%
Product Overview Specifications Questions & Answers Customer Reviews

Product Overview

Energy Star Certified and unlike standard LED's, these Philips bulbs offer a dimmable warm glow effect that lets you go from functional lighting, to inviting, to cozy. You can customize your room for every moment
and always have the right light. Perfect for indoor track fixtures, down lights and high hats to create a lovely, warm ambiance.

* Brightness: 650-Lumens

* Estimated yearly energy cost: $1.07 (based on 3-hours/day, 11¢/kWh, cost depend on rates and use)

* Life hours: 25000

* Light appearance: soft white

* Energy used: 9-Watt

* Lumens per watt: 72.22

* Enjoy the energy-savings of LED's without sacrificing light quality with this warm glow dimmable bulb

* Ideal for indoor use in track fixtures, high hats and down lights in living rooms, bedrooms, dining and family rooms

* With a lifetime of up to 25,000-hours, you can reduce the hassle of frequently replacing your light bulbs, Philips LED bulbs enable the perfect lighting solution for 22+ years

* Just by flipping the switch, your room is at full brightness, no slow starting or waiting

Question of Interest: Accounting for variability, is the mean

lifetime of light bulbs actually 250007
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1 Sample Inference — 1-Sample t and z tests

Information Needed for the test:
-Sample of reasonable size, observing the actual lifetimes of
lightbulbs in controlled environment
- Either we can use the known standard deviation over time of
all light bulbs (if we have it) or just use the sample standard
deviation

Assume we have a sample of n=100 light bulbs with x = 23024 and
sample st dev (s) = 6705

Step 1: Confirm Assumptions

- One sample compared to known value
- Testing for true unknown mean ()
- In this case we have unknown ¢?

- Do we have approximate normality??
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1 Sample Inference — 1-Sample t and z tests

- . qqnorm(data)
Confirming Normality qqline(data, col="red”)

Normal Q-Q Plot

Sample Quantiles

Theoretical Quantiles
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1 Sample Inference — 1-Sample t and z tests

Running the Test

Conclusion

At the alpha=.05 significance
level, with a p-value=.002<.05,
we can reject the null
hypothesis and conclude that
the average lifetime of
lightbulbs produced is shorter
than the claimed 25000 hours.

pt(-2.95, 99)=.002
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1-Sample t-test
Assumptions:
-One sample compared to known value

- Data approx. normal (qgnorm in R)
- Unknown u (mean)

- Unknown g2

Hy: g = 25000 (i)
H,:u < 25000
Test Stat-t* = YPI=HO _

S
100(23024-25000
V100( ) _ _2.95
YAIRS

Rejection Rule (in R):
1-pt(t"',n—1) if u>ug
pt(t',n—1) if p<pe
21 —pt(|t°],0,1) if p+#po




1 Sample Inference — Nonparametric Approach

What Happens When We Don’t Have Normality?

Normal Q-Q Plot

Sample Quantiles

-2.0

Theoretical Quantiles
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1 Sample Inference — Nonparametric Approach

Conclusion

At the alpha=.05 significance level,
with a p-value=0.1933>.05, we
cannot reject the null hypothesis
and therefore cannot conclude
that the median lifetime of
lightbulbs produced is shorter
than the claimed 25000 hours.

> wilcox.test(1ightbulb,alternative="1less" ,mu=25000,conf. Tevel=.95, exact=FALSE)
wWilcoxon signed rank test with continuity correction

data: Tightbulb
V =73, p-value = 0.1933
alternative hypothesis: true Tocation is less than 25000
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Wilcoxon Signed Rank Test
Assumptions:

- One sample compared to known value
- Unknown m (median)
- Symmetric (look at histogram)

H,:m = 25000 (m,)
H,: m # 25000

m > 25000

m < 25000

Test Stat: Sum the positive-signed ranks

W)

Rejection Rule (in R):
1—pnorm(z*,0,1) if m>m,
pnorm(z*,0,1) if m<m,
2(1 —pnorm(|z*]|,0,1) if m # my




2 Sample Inference — Welch-Satterthwaite T-test

Welch-Satterthwaite (2-Sample T-test

!
Not To Worry, We Have R! Assumptions:

pon't WOI'I‘}; - Comparing means of two independent _samples
o XA — Each sample approx. normal (qgnorm in R)
o oy - unknown ¢4,? # 0,2

Hy: py = py (g — pz = 0)
Hy: py # po (ug — pp # 0)
p1 > pp (g — pz > 0)
P < py (ug —py <0)

Be Happy!! | Test Stat: t* =

ny
Rejection Rule (in R):
1- pt(t*; O; 1) if H1 > 25
pt(t*, Or 1) if U1 < 2]
2(1 —pt(|t*|,v) if ue # p2

2 2

) S
<_1+_2
nz

2
"12—>2 = degrees of freedom

1) (52
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First, Need Data Like This:

response group
15 1
22 2
36 2
43 1
27 1
35 2

Where v =




2 Sample Inference — Pooled & Paired T-tests

Pooled T-test
Assumptions:

- Comparing means of two indep samples
- Each sample approx normal (qgnorm in R)
- unknown ¢42 = 0,2

Hy: puy = pup (g —puz =0)
Hy: py # py (Ug — 1y # 0)
p1 > pp (g — puz > 0)
P < pp (g —py <0)

Y1-Y,

\/((nl—l)s%+(n2—1)s%>< 1 N 1 )
nq+ny—2 nq{ np
Rejection Rule (in R):
1-—ptt",ng+n, —2) if uy > py
pt(t’, ng +ny —2) if pe<pz
A -pt(t’[ng+ny, —2)) if yy#p

Test Stat: t* =

&2 COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

Paired t-test
Assumptions:

- Compare means of DEPENDENT samples
- Each sample approx normal (ggnorm in R)
- Unknown ¢*

H,: u1 — uo = 0 (interested in difference)
Hy:pg —p2 #0

pe—pz >0

H1—H2 <0

Test Stat:t* = LPIY=H0)

S

tn—l

Rejection Rule (in R):
1—pt(t',n—-1)
pt(t',n—1)

2(1 —pt(|t"],0,1)

i_f Hi— Uz >0
if wy—p <0
if ugy—p,#0




2 Sample Inference — Pooled & Paired T-tests

R CODE
Welch=Satterthwaite (2-Sample T-Test)

> t.test(data$response~data$group, alternative="less", paired=FALSE, var.equal=FALSE)
welch Two Sample t-test

data: data$response by data$group
t = -0.28737, df = 3.1286, p-value = 0.3959
alternative hypothesis: true difference in means is less than 0
95 percent confidence interval:
-Inf 18.81038

sample estimates:
mean in group 1 mean in group 2

28.33333 31.00000

Paired T-Test

> t.test(data$response~data$group, alternative="less'f, paired=TRUE, Vv¥r.equal=FALSE)

Paired t-test

data: dataSresponse by data$group
t = -0.55074, df = 2, p-value = 0.3186
alternative hypothesis: true difference in means is Tless than 0
95 percent confidence interval:
-Inf 11.47175
sample estimates:
mean of the differences
-2.666667
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2 Sample Inference — Pooled & Paired T-tests

R CODE
Welch=Satterthwaite (2-Sample T-Test)

> t.test(data$response~data$group, alternative="less", paired=FALSE, var.equal=FALSE)
welch Two Sample t-test

data: data$response by data$group
t = -0.28737, df = 3.1286, p-value = 0.3959
alternative hypothesis: true difference in means is less than 0
95 percent confidence interval:
-Inf 18.81038

sample estimates:
mean in group 1 mean in group 2

28.33333 31.00000

Pooled T-Test

> t.test(data$response~data$group, alternative="less", paired=FALSE,\var.equal=TRUE)
Two Sample t-test

data: dataSresponse by data$group
t = -0.28737, df = 4, p-value = 0.3941
alternative hypothesis: true difference in means is less than 0
95 percent confidence interval:
-Inf 17.11603

sample estimates:
mean in group 1 mean in group 2

28.33333 31.00000
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2 Sample Inference — Pooled & Paired T-tests

Testing For Equal Variance

H,: variances equal
H 4: variances not equal

> var.test(data$response~data$group, alternative="two.sided")
F test to compare two variances

data: data$response by data$group
F = 3.235, num df = 2, denom df = 2, p-value = 0.4723
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.08294802 126.16393443
sample estimates:
ratio of variances
3.234973

Conclusion
At the alpha=.05 significance level, with a p-value=..4723>.05,

we conclude variances are equal.
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2 Sample Inference — Business Application (Lead Scoring)

Application — Lead Source Comparison
Projects come from various lead sources. Here, we are interested in
comparing 2 lead sources that the sales team can’t agree on as the
company’s “best” lead source.

Information We Have
- Project revenue for each lead noting the source each lead
came from (8 sources in total)
- We consider all the history we have for each of the two lead
sources we are interested in comparing as separate samples
- We gather sample statistics from each of the two lead
sources

Source #1 — Think! Architecture Source #2 — Superstructures
n,; =293 n, = 290
71 — $76, 725 72 - $78, 547
s1 = %$9.673 s, = $8,431
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2 Sample Inference — Business Application (Lead Scoring)

Thought Flow

1 or 2 Samples? Step 1 > 2 Samples (Interested in
Comparing Means)
Independent
Independent
or Dependent Step 2 -

Sarr?ples? P > (Design Setup)
Unknown Step 3 Yes, t.his is
012,0,%7 typical

Equal Variance? Step 4 > Equality of Variance
Test
Both samples
approx. Normal? Step 5 > Normal QQ Plots
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2 Sample Inference — Business Application (Lead Scoring)

> var.test(data%$response~data$group, alternative="two.sided")
F test to compare two variances

data: dataSresponse by data$group
F = 3.235, num df = 2, denom df = 2, p-value = 0.4723
alternative hypothesis: true ratio of wvariances is not equal to 1
95 percent confidence interval:
9.08294802 126.16393443
sample estimates:
ratio of variances
3.234973

Normal Q-Q Plot - Superstructures
Normal Q-Q Plot - Think!

Conclusions

-Variances are equal
-Normality is satisfied

Sample Quantiles
0
|

Sample Quantiles

Theoretical Quantiles
Theoretical Quantiles

&2 COLUMBIA UNIVERSITY
IN THE CITY OF NEW YORK



2 Sample Inference — Business Application (Lead Scoring)

1-Sample z-test
Paired t-test Assumptions:
- One sample compared to known value
- Data approx. normal (qgqnorm in R)
- Unknown u (mean)
- Known ¢

Assumptions:
- Compare means of DEPENDENT samples

- Each sample approx normal (qgnorm in R)
- Unknown ¢?

1-Sample t-test Data Description
Assumptions:

-One sample compared to known value .
- Data approx. normal (ggnorm in R) 2 samples comparison of means

- Unknown u (mean) -Independent samples

- Unknown ¢? -Unknown 0,2, 6,2

-Equal variance
-Normality Satisfied

Welch-Satterthwaite (2-Sample T-test)
Assumptions:
-Comparing means of two independent samples

-Each sample approx. normal (qgqnorm in R)

Pooled T-test
-unknown ¢,? # 0,2

Assumptions.
- Comparing means of two indep samples
- Each sample approx normal (qgnorm in R)

-unknown g% = 7,2
&2 COLUMBIA UNIVERSITY 1 2
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2 Sample Inference — Business Application (Lead Scoring)

Pooled T-test
Hy: py = py (ug — puz = 0)
Hy:pq > pp (g — pp >0)

Where Group1=Think Architecture
Group 2=Susperstructures

> t.test(leads$Revenue~leads$lLeadSource, alternative="greater"”, paired=FALSE, var.equal=TRUE)
Two Sample t-test

data: leads$Revenue by leads$LeadSource
t = -0.4097, df = 581, p-value = @.6589
alternative hypothesis: true difference in means is greater than 9
95 percent confidence interval:
-0.1661357 Inf
sample estimates:
mean in group 1 mean in group 2
9.05335665 @.08644375

Conclusion
At the alpha=.05 significance level, with a p-value=..6589>.05,

we cannot reject the null hypothesis and therefore cannot
conclude that the mean revenue from Think! Architecture Is
greater than that from Superstructure.
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Further Extension - ANOVA

What Happens When We Want to
Compare 3 or more Groups?

Sample 1 Sample 2 Sample 3
X1 Y1 Zy
X2 Y2 Z3
X3 Y3 Z3
xn yn Zn

Analysis of Variance (ANOVA)

Resource:
https://onlinecourses.science.psu.edu/stat502/
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Thank You!

Questions or Comments?

?
S
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