
Sharpening Our Statistical 
Toolkit

A Rebirth of Classical Powerful Techniques

Austin Menger austin.menger@gmail.com



A Bit About Me

Current 
Statistics PhD Student, University of 

Connecticut

Previous 
New York Engineers - Lead Data Scientist

Reed Exhibitions – Database Analyst

Eduction
Columbia University – M.S. Applied Analytics

Georgetown University – B.S (Hons.) Mathematics

Interests
Rugby

Freestyle Skiing



Agenda
Sections Pages

Contextualizing Hypothesis Testing

What is a Data Scientist? 4

Where We Are In The Process 5,6

Describing Data - Probabalistic Distributions 7-10

Hypothesis Testing Theory 11,12

1 Sample Inference

1-Sample Z-tests, T-tests 13-17

1-Sample Nonparametric Approach 18,19

2 Sample Inference

Welch-Satterthwaite T-test (2-Sample T-Test) 20

Pooled & Paired T-tests 21-24

Business Application (Lead Scoring) 25-29

Further Extension - ANOVA 30



What is a Data Scientist?

What We Are Not

Statistics & 
Mathematics

Data Mining

Communication

What We Are:

https://www.youtube.com/watch?v=uVD3KPUnKHk


Where We Are In The Process

Gaps Analysis

EDA/Statistical Modeling

Change Management**

Problem Agreement



Where We Are In The Process

EDA/Statistical Modeling
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Describing Data – Probabilistic Distributions

1 2 = 3
5 2 = 1,3

General Properties of Distributions

SupportFunction 
(Outputs Probability)

Example:



Describing Data – Probabilistic Distributions

Discrete Continuous
Definition Takes specific 

values
Takes values in 

an interval
Support x=1,3

x=0,1,2,3,…
1 ≤ x ≤ 3

∞ < x < ∞ (x ∈ R)
Finding 

Probabilities
Sum the 

probabilities of 
the x values 
satisfying the 

inequality

Take the area 
under the curve 
between the two 

points

Examples - Previous Slide
- Binomial Dist’n

- Normal Dist’n
- T Dist’n
- Uniform
Distribution

Hypothesis 
Tests Utilize 
Continuous 

Distributions

Discrete vs Continuous Distributions:



Describing Data – Probabilistic Distributions
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Examples of Symmetric 
Distributions: 

Normal 
Distribution

t
Distribution



Describing Data – Probabilistic Distributions

Normal Dist’n
>pnorm(value, mean, st dev)
>qnorm(prob in dec form, 
mean, st dev)

T-Dist’n
>pt(value, degrees of 
freedom)
>qt(prob in dec form, d.f.)

**Reference: 
http://www.stat.umn.edu/geyer/old/5101/rloo
k.html

Why Normal and T-Distributions?



Hypothesis Testing Theory

Calculation: Calculate theoretical probability of 
observing what you did

Observation: Observe Real Data

Base Assumption: The null hypothesis is     
true

Conclusion: If probability “low”, yet we did 
observe it, then null hypothesis cannot be true



Hypothesis Testing Theory - Components

1. Null and alternative hypothesis

!": typically the “status quo” (null)

!#: what you’d like to test (alt)

2. Observed Test Statistic – calculated using test-

specific formula (usually t (t-dist’n) or z (normal dist’n))

3. Decision Rule – Based on p-value (the probability of 

observing the data you did, or more extreme, given 

that the null hypothesis is true)

P-value <.05 à Reject !", conclude !#
P-value >.05 à Cannot reject !", therefor cannot 

conclude !#

4. Conclude in context



1 Sample Inference – 1-Sample t and z tests
1-Sample z-test

Assumptions: 
- One sample compared to known value
- Data approx. normal (qqnorm in R) 
- Unknown ! (mean)
- Known "#

$%: ! = ' (!))
$+:! ≠ '

! > '
! < '

Test	Stat:	7∗ = 9(:;<!))
"

~>(), @)

Rejection	Rule	(in	R):	
@ − J9KLM(7∗, ), @) NO ! > !)
J9KLM 7∗, ), @ NO ! < !)
#(@ − J9KLM 7∗ , ), @ NO ! ≠ !)

1-Sample t-test
Assumptions: 
-One sample compared to known value
- Data approx. normal (qqnorm in R) 
- Unknown ! (mean)
- Unknown "#

$%: ! = ' (!))
$+:! ≠ '

! > '
! < '

Test	Stat:	P∗ = 9(:;<!))
Q

~P9<@

Rejection	Rule	(in	R):	
@ − JP(P∗, 9 − @) NO ! > !)
JP P∗, 9 − @ NO ! < !)
#(@ − JP P∗ , ), @ NO ! ≠ !)



1 Sample Inference – 1-Sample t and z tests

Application – Quality Assurance
Philips produces 65W Dimmable LED Energy Star Light Bulbs sold 
at Home Depot. On the Home Depot site, they advertise the “life 
hours” of each light bulb is 25000.  

Question of Interest: Accounting for variability, is the mean 
lifetime of light bulbs actually 25000?



1 Sample Inference – 1-Sample t and z tests

Information Needed for the test:
-Sample of reasonable size, observing the actual lifetimes of 

lightbulbs in controlled environment
- Either we can use the known standard deviation over time of 
all light bulbs (if we have it) or just use the sample standard 

deviation

Assume we have a sample of n=100 light bulbs with "̅ = 23024 and 
sample st dev (s) = 6705

Step 1: Confirm Assumptions
- One sample compared to known value

- Testing for true unknown mean (µ)
- In this case we have unknown *+

- Do we have approximate normality?? 



1 Sample Inference – 1-Sample t and z tests
qqnorm(data)

qqline(data, col=“red”)Confirming Normality



1 Sample Inference – 1-Sample t and z tests

Running the Test 1-Sample t-test
Assumptions: 
-One sample compared to known value
- Data approx. normal (qqnorm in R) 
- Unknown ! (mean)
- Unknown "#

$%: ! = #'((( (!()
$+:! < #'(((

Test	Stat:	5∗ = 7(89:!()

;
=

<(((#=(#>:#'((()

?@('
= −#. C'

Rejection	Rule	(in	R):	
< − L5(5∗, 7 − <) NO ! > !(
L5 5∗, 7 − < NO ! < !(
#(< − L5 5∗ , (, < NO ! ≠ !(

pt(-2.95, 99)=.002

Conclusion

At the alpha=.05 significance 
level, with a p-value=.002<.05, 
we can reject the null 
hypothesis and conclude that 
the average lifetime of 
lightbulbs produced is shorter 
than the claimed 25000 hours.     



1 Sample Inference – Nonparametric Approach

What Happens When We Don’t Have Normality?



1 Sample Inference – Nonparametric Approach

Wilcoxon Signed Rank Test
Assumptions: 
- One sample compared to known value
- Unknown ! (median)
- Symmetric (look at histogram)

"#:! = %&''' (!')
"*: ! ≠ %&'''

! > %&'''
! < %&'''

Test	Stat:	Sum	the	positive-signed	ranks	
(V)

Rejection	Rule	(in	R):	
H − JKLM!(N∗, ', H) QR ! > !'
JKLM! N∗, ', H QR ! < !'
%(H − JKLM! N∗ , ', H QR ! ≠ !'

Conclusion

At the alpha=.05 significance level, 
with a p-value=0.1933>.05, we 
cannot reject the null hypothesis 
and therefore cannot conclude 
that the median lifetime of 
lightbulbs produced is shorter 
than the claimed 25000 hours.     



2 Sample Inference – Welch-Satterthwaite T-test

Welch-Satterthwaite (2-Sample T-test)

Assumptions: 

- Comparing means of two independent samples 

– Each sample approx. normal (qqnorm in R) 

- unknown !"
# ≠ !#

#

%&: '" = '# '" − '# = *

%+: '" ≠ '# '" − '# ≠ *

'" > '# '" − '# > *

'" < '# '" − '# < *

Test	Stat:			6∗ =
8"98#

:
"
#
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<

:
#
#

;#

Rejection	Rule	(in	R):	

" − G6 6∗, *, " IJ '" > '#

G6 6∗, *, " IJ '" < '#

#(" − G6 6∗ , K IJ '" ≠ '#
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= degrees of freedom 

Not To Worry, We Have R!

First, Need Data Like This:



2 Sample Inference – Pooled & Paired T-tests
Pooled T-test

Assumptions: 
- Comparing means of two indep samples
- Each sample approx normal (qqnorm in R) 
- unknown !"# = !##

%&: '" = '# '" − '# = )
%*: '" ≠ '# '" − '# ≠ )

'" > '# '" − '# > )
'" < '# '" − '# < )

Test	Stat:		6∗ = 8"98#
:";" <"

#= :#;" <#
#

:"=:#;#
"
:"
> "
:#

Rejection	Rule	(in	R):	
" − I6 6∗, :" + :# − # LM '" > '#

I6 6∗, :" + :# − # LM '" < '#
#(" − I6 6∗ , :" + :# − # ) LM '" ≠ '#

Paired t-test
Assumptions: 
- Compare means of DEPENDENT samples
- Each sample approx normal (qqnorm in R) 
- Unknown !#

%&: '" − '# = ) (interested	in	difference)
%*: '" − '# ≠ )

'" − '# > )
'" − '# < )

Test	Stat:	6∗ = :(Q89'))
< ~6:9"

Rejection	Rule	(in	R):	
" − I6 6∗, : − " LM '" − '# > )
I6 6∗, : − " LM '" − '# < )
#(" − I6 6∗ , ), " LM '" − '# ≠ )



2 Sample Inference – Pooled & Paired T-tests

R CODE
Welch=Satterthwaite (2-Sample T-Test)

Paired T-Test



2 Sample Inference – Pooled & Paired T-tests

R CODE
Welch=Satterthwaite (2-Sample T-Test)

Pooled T-Test



2 Sample Inference – Pooled & Paired T-tests

Testing For Equal Variance
!": variances equal

!$: variances not equal

Conclusion
At the alpha=.05 significance level, with a p-value=..4723>.05, 
we conclude variances are equal. 



2 Sample Inference – Business Application (Lead Scoring)

Application – Lead Source Comparison
Projects come from various lead sources. Here, we are interested in 
comparing 2 lead sources that the sales team can’t agree on as the 
company’s “best” lead source.

Information We Have
- Project revenue for each lead noting the source each lead 

came from (8 sources in total)
- We consider all the history we have for each of the two lead 

sources we are interested in comparing as separate samples
- We gather sample statistics from each of the two lead 

sources 

Source #1 – Think! Architecture    Source #2 – Superstructures
!" =293                          !$ = $%&

'(" = $*+, *$- '($ = $*., -/*
0" = $%. +*2 0$ = $., /2"



Step 2

Step 4

Step 5

Unknown 
σ"#, σ##? 

Yes, this is 
typical

Equal Variance?

Both samples 
approx. Normal?

Equality of Variance 
Test

Normal QQ Plots

Step 3

Independent 
or Dependent 

Samples?

Independent 
(Design Setup)

1 or 2 Samples? Step 1

2 Sample Inference – Business Application (Lead Scoring)

Thought Flow
2 Samples (Interested in 

Comparing Means)



2 Sample Inference – Business Application (Lead Scoring)

Conclusions
-Variances are equal
-Normality is satisfied
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2 Sample Inference – Business Application (Lead Scoring)

Data Description

-2 samples comparison of means
-Independent samples
-Unknown σ"#, σ##
-Equal variance
-Normality Satisfied

1-Sample z-test
Assumptions: 
- One sample compared to known value
- Data approx. normal (qqnorm in R) 
- Unknown % (mean)
- Known &'

1-Sample t-test
Assumptions: 
-One sample compared to known value
- Data approx. normal (qqnorm in R) 
- Unknown % (mean)
- Unknown &'

Welch-Satterthwaite (2-Sample T-test)
Assumptions: 
-Comparing means of two independent samples
-Each sample approx. normal (qqnorm in R) 
-unknown &(' ≠ &''

Pooled T-test
Assumptions: 
- Comparing means of two indep samples
- Each sample approx normal (qqnorm in R) 
- unknown &(' = &''

Paired t-test
Assumptions: 
- Compare means of DEPENDENT samples
- Each sample approx normal (qqnorm in R) 
- Unknown &'



2 Sample Inference – Business Application (Lead Scoring)

Pooled T-test
!": #$ = #& #$ − #& = (
!): #$ > #& #$ − #& > (

Where Group1=Think Architecture
Group	2=Susperstructures

Conclusion
At the alpha=.05 significance level, with a p-value=..6589>.05, 
we cannot reject the null hypothesis and therefore cannot 
conclude that the mean revenue from Think! Architecture Is 
greater than that from Superstructure.  



Further Extension - ANOVA

What Happens When We Want to 
Compare 3 or more Groups?

Analysis of Variance (ANOVA)

Resource: 
https://onlinecourses.science.psu.edu/stat502/

Sample	1
)*
)+
),
⋮
).

Sample	2
0*
0+
0,
⋮
0.

Sample	3
2*
2+
2,
⋮
2.



Thank You!

Questions or Comments?

Contact


