Sharpening Our Statistical Toolkit

A Rebirth of Classical Powerful Techniques

Austin Menger

austin.menger@gmail.com

A Bit About Me

Current Statistics PhD Student, University of Connecticut

Previous New York Engineers - Lead Data Scientist Reed Exhibitions – Database Analyst

Eduction **Columbia University – M.S. Applied Analytics Georgetown University – B.S (Hons.) Mathematics**

> Interests Rugby Freestyle Skiing

Agenda

Sections	Pages
Contextualizing Hypothesis Testing	
What is a Data Scientist?	4
Where We Are In The Process	5,6
Describing Data - Probabalistic Distributions	7-10
Hypothesis Testing Theory	11,12
1 Sample Inference	
1-Sample Z-tests, T-tests	13-17
1-Sample Nonparametric Approach	18,19
2 Sample Inference	
Welch-Satterthwaite T-test (2-Sample T-Test)	20
Pooled & Paired T-tests	21-24
Business Application (Lead Scoring)	25-29
Further Extension - ANOVA	30

What is a Data Scientist?

What We Are Not

What We Are:

Where We Are In The Process

Where We Are In The Process

General Properties of Distributions

$$1) \quad \sum_{i=1}^{n} P(X_i) = 1$$

2) $0 \leq P(X_i) \leq 1 \forall i, i = 1, \dots, n$

Example:

IN THE CITY OF NEW YORK

Discrete vs Continuous Distributions:

	Discrete	Continuous
Definition	Takes specific values	Takes values in an interval
Support	x=1,3 x=0,1,2,3,	$1 \le x \le 3$ $\infty < x < \infty \ (x \in R)$
Finding Probabilities	Sum the probabilities of the x values satisfying the inequality	Take the area under the curve between the two points
Examples	- Previous Slide - Binomial Dist'n	 Normal Dist'n T Dist'n Uniform Distribution

Hypothesis Tests Utilize Continuous Distributions

Examples of Symmetric Distributions:

Why Normal and T-Distributions?

Standard Normal Probabilities

Table entry for z is the area under the standard normal curve to the left of z.

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	7611	.7642	7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888.	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	,9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998

<u>Normal Dist'n</u> >pnorm(value, mean, st dev) >qnorm(prob in dec form, mean, st dev)

<u>T-Dist'n</u> >pt(value, degrees of freedom) >qt(prob in dec form, d.f.)

COLUMBIA UNIVERSITY

Hypothesis Testing Theory

IN THE CITY OF NEW YORK

Hypothesis Testing Theory - Components

1. Null and alternative hypothesis H_0 : typically the "status quo" (null) H_A : what you'd like to test (alt)

2. Observed Test Statistic – calculated using testspecific formula (usually t (t-dist'n) or z (normal dist'n))

3. Decision Rule – Based on p-value (the probability of observing the data you did, or more extreme, given that the null hypothesis is true)
P-value <.05 → Reject H₀, conclude H_A
P-value >.05 → Cannot reject H₀, therefor cannot conclude H_A

4. Conclude in context

1-Sample z-test

Assumptions:

- One sample compared to known value
- Data approx. normal (qqnorm in R)
- Unknown μ (mean)
- Known σ^2

 $H_0: \mu = 5 \ (\mu_0)$ $H_A: \mu \neq 5$ $\mu > 5$ $\mu < 5$

Test Stat: $z^* = \frac{\sqrt{n}(\overline{Y} - \mu_0)}{\sigma} \sim N(0, 1)$

 Rejection Rule (in R):

 $1 - pnorm(z^*, 0, 1)$ if $\mu > \mu_0$
 $pnorm(z^*, 0, 1)$ if $\mu < \mu_0$
 $2(1 - pnorm(|z^*|, 0, 1))$ if $\mu \neq \mu_0$

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

1-Sample t-test

Assumptions:

- -One sample compared to known value
- Data approx. normal (qqnorm in R)
- Unknown μ (mean)
- Unknown σ^2

 $H_0: \mu = 5 \ (\mu_0)$ $H_A: \mu \neq 5$ $\mu > 5$ $\mu < 5$

Test Stat:
$$t^* = rac{\sqrt{n}(\overline{Y} - \mu_0)}{s} \sim t_{n-1}$$

Rejection Rule (in R):	
$1 - pt(t^*, n-1)$	if $\mu > \mu_0$
$pt(t^*$, $n-1)$	if $\mu < \mu_0$
$2(1 - pt(t^* , 0, 1))$	if $\mu \neq \mu_0$

Application – Quality Assurance

Philips produces 65W Dimmable LED Energy Star Light Bulbs sold at Home Depot. On the Home Depot site, they advertise the "life hours" of each light bulb is 25000.

Product Overview Specifications Questions & Answers Customer Reviews	

Product Overview

Energy Star Certified and unlike standard LED's, these Philips bulbs offer a dimmable warm glow effect that lets you go from functional lighting, to inviting, to cozy. You can customize your room for every moment and always have the right light. Perfect for indoor track fixtures, down lights and high hats to create a lovely, warm ambiance.

- Brightness: 650-Lumens
- · Estimated yearly energy cost: \$1.07 (based on 3-hours/day, 11¢/kWh, cost depend on rates and use)
- Life hours: 25000
- Light appearance: soft white
- Energy used: 9-Watt

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

- Lumens per watt: 72.22
- · Enjoy the energy-savings of LED's without sacrificing light quality with this warm glow dimmable bulb
- · Ideal for indoor use in track fixtures, high hats and down lights in living rooms, bedrooms, dining and family rooms
- With a lifetime of up to 25,000-hours, you can reduce the hassle of frequently replacing your light bulbs, Philips LED bulbs enable the perfect lighting solution for 22+ years
- · Just by flipping the switch, your room is at full brightness, no slow starting or waiting

Question of Interest: Accounting for variability, is the mean lifetime of light bulbs actually 25000?

Information Needed for the test:
Sample of reasonable size, observing the actual lifetimes of lightbulbs in controlled environment
Either we can use the known standard deviation over time of all light bulbs (if we have it) or just use the sample standard deviation

Assume we have a sample of n=100 light bulbs with $\bar{x} = 23024$ and sample st dev (s) = 6705

Step 1: Confirm Assumptions

- One sample compared to known value
 - Testing for true unknown mean (μ)
 - In this case we have unknown σ^2
- Do we have approximate normality??

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Confirming Normality

qqnorm(data) qqline(data, col="red")

Normal Q-Q Plot

Theoretical Quantiles

Running the Test

Conclusion

At the alpha=.05 significance level, with a p-value=.002<.05, we can reject the null hypothesis and conclude that the average lifetime of lightbulbs produced is shorter than the claimed 25000 hours.

1-Sample t-test

Assumptions:

- -One sample compared to known value
- Data approx. normal (qqnorm in R)
- Unknown μ (mean)
- Unknown σ^2

 $H_0: \mu = 25000 \ (\mu_0) \ H_A: \mu < 25000$

 $\frac{\text{Test Stat: } t^* = \frac{\sqrt{n}(\bar{Y} - \mu_0)}{s} = \frac{\sqrt{100}(23024 - 25000)}{6705} = -2.95$

 $\begin{array}{ccc} Rejection \ Rule \ (in \ R): \\ 1 - pt(t^*, n - 1) & if \ \mu > \mu_0 \\ \longrightarrow \ pt(t^*, n - 1) & if \ \mu < \mu_0 \\ 2(1 - pt(|t^*|, 0, 1)) & if \ \mu \neq \mu_0 \end{array}$

pt(-2.95, 99)=.002

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

1 Sample Inference – Nonparametric Approach

What Happens When We Don't Have Normality?

Normal Q-Q Plot

Theoretical Quantiles

1 Sample Inference – Nonparametric Approach

Conclusion

At the alpha=.05 significance level, with a p-value=0.1933>.05, we cannot reject the null hypothesis and therefore cannot conclude that the median lifetime of lightbulbs produced is shorter than the claimed 25000 hours.

> wilcox.test(lightbulb,alternative="less",mu=25000,conf.level=.95, exact=FALSE)

Wilcoxon signed rank test with continuity correction

data: lightbulb V = 73, p-value = 0.1933 alternative hypothesis: true location is less than 25000

Assumptions: - One sample compared to known value

- Unknown *m* (median)
- Symmetric (look at histogram)

 $H_0:m = 25000 \ (m_0)$ $H_A:m \neq 25000$ m > 25000m < 25000

Test Stat: Sum the positive-signed ranks (V)

Wilcoxon Signed Rank Test

 Rejection Rule (in R):

 $1 - pnorm(z^*, 0, 1)$ if $m > m_0$
 $pnorm(z^*, 0, 1)$ if $m < m_0$
 $2(1 - pnorm(|z^*|, 0, 1))$ if $m \neq m_0$

2 Sample Inference – Welch-Satterthwaite T-test

Not To Worry, We Have R!

First, Need Data Like This:

response	group
15	1
22	2
36	2
43	1
27	1
35	2

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Welch-Satterthwaite (2-Sample T-test)

Assumptions:

- Comparing means of two independent samples
- Each sample approx. normal (qqnorm in R)

- unknown $\sigma_1^2 \neq \sigma_2^2$

 $H_0: \mu_1 = \mu_2 \ (\mu_1 - \mu_2 = \mathbf{0})$ $H_A: \mu_1 \neq \mu_2 \ (\mu_1 - \mu_2 \neq \mathbf{0})$ $\mu_1 > \mu_2 \ (\mu_1 - \mu_2 > \mathbf{0})$ $\mu_1 < \mu_2 \ (\mu_1 - \mu_2 < \mathbf{0})$

$$\begin{array}{l} \textit{Test Stat: } t^{*} = \frac{\overline{Y_{1}} - \overline{Y_{2}}}{\sqrt{\left(\frac{s_{1}^{2}}{n_{1}}\right) + \left(\frac{s_{2}^{2}}{n_{2}}\right)}} \\ \textit{Rejection Rule (in R):} \\ 1 - pt(t^{*}, 0, 1) & if \ \mu_{1} > \mu_{2} \\ pt(t^{*}, 0, 1) & if \ \mu_{1} < \mu_{2} \\ 2(1 - pt(|t^{*}|, v)) & if \ \mu_{1} \neq \mu_{2} \end{array} \\ \textbf{Where } v = \frac{\left(\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}\right)^{2}}{\left(\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}\right)^{2}} = \text{degrees of freedom} \end{array}$$

2 Sample Inference – Pooled & Paired T-tests

Pooled T-test

Assumptions:

- Comparing means of two indep samples - Each sample approx normal (qqnorm in R) - unknown $\sigma_1{}^2 = \sigma_2{}^2$

$$H_{0}: \mu_{1} = \mu_{2} (\mu_{1} - \mu_{2} = 0)$$

$$H_{A}: \mu_{1} \neq \mu_{2} (\mu_{1} - \mu_{2} \neq 0)$$

$$\mu_{1} > \mu_{2} (\mu_{1} - \mu_{2} > 0)$$

$$\mu_{1} < \mu_{2} (\mu_{1} - \mu_{2} < 0)$$

Test Stat: $t^* = \frac{\overline{Y_1} - \overline{Y_2}}{\sqrt{\left(\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}\right)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$

Rejection Rule (in R): $1 - pt(t^*, n_1 + n_2 - 2)$ if $\mu_1 > \mu_2$ $pt(t^*, n_1 + n_2 - 2)$ if $\mu_1 < \mu_2$ $2(1 - pt(|t^*|, n_1 + n_2 - 2))$ if $\mu_1 \neq \mu_2$

Paired t-test

Assumptions:

- Compare means of DEPENDENT samples
- Each sample approx normal (qqnorm in R)

- Unknown σ^2

 $H_0: \mu_1 - \mu_2 = 0 \text{ (interested in difference)}$ $H_A: \mu_1 - \mu_2 \neq 0$ $\mu_1 - \mu_2 > 0$ $\mu_1 - \mu_2 < 0$ $Test Stat: t^* = \frac{\sqrt{n}(\overline{Y} - \mu_0)}{s} \sim t_{n-1}$

Rejection Rule (in R): $1 - pt(t^*, n - 1)$ if $\mu_1 - \mu_2 > 0$ $pt(t^*, n - 1)$ if $\mu_1 - \mu_2 < 0$ $2(1 - pt(|t^*|, 0, 1))$ if $\mu_1 - \mu_2 \neq 0$

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

2 Sample Inference – Pooled & Paired T-tests

R CODE

Welch=Satterthwaite (2-Sample T-Test)

```
> t.test(data$response~data$group, alternative="less", paired=FALSE, var.equal=FALSE)
```

Welch Two Sample t-test

Paired T-Test

> t.test(data\$response~data\$group, alternative="less", paired=TRUE, var.equal=FALSE)

Paired t-test

2 Sample Inference – Pooled & Paired T-tests

R CODE

Welch=Satterthwaite (2-Sample T-Test)

```
> t.test(data$response~data$group, alternative="less", paired=FALSE, var.equal=FALSE)
```

Welch Two Sample t-test

Pooled T-Test

> t.test(data\$response~data\$group, alternative="less", paired=FALSE, var.equal=TRUE)

Two Sample t-test

Testing For Equal Variance

H_0 : variances equal H_A : variances not equal

> var.test(data\$response~data\$group, alternative="two.sided")

F test to compare two variances

```
data: data$response by data$group
F = 3.235, num df = 2, denom df = 2, p-value = 0.4723
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
        0.08294802 126.16393443
sample estimates:
ratio of variances
        3.234973
```

Conclusion

At the alpha=.05 significance level, with a p-value=..4723>.05, we conclude variances are equal.

Application – Lead Source Comparison

Projects come from various lead sources. Here, we are interested in comparing 2 lead sources that the sales team can't agree on as the company's "best" lead source.

Information We Have

- Project revenue for each lead noting the source each lead came from (8 sources in total)
- We consider all the history we have for each of the two lead sources we are interested in comparing as separate samples
 We gather sample statistics from each of the two lead sources

Source #1 - Think! ArchitectureSource #2 - Superstructures $n_1 = 293$ $n_2 = 290$ $\overline{x}_1 = \$76,725$ $\overline{x}_2 = \$78,547$ $s_1 = \$9.673$ $s_2 = \$8,431$

COLUMBIA UNIVERSITY

Thought Flow

.

2 Sample Inference – Business Application (Lead Scoring)

COLUMBIA UNIVERSITY

2 Sample Inference – Business Application (Lead Scoring)

Paired t-test

Assumptions:

- Compare means of DEPENDENT samples
- Each sample approx normal (qqnorm in R)
- Unknown σ^2

1-Sample t-test

Assumptions:

- -One sample compared to known value
- Data approx. normal (qqnorm in R)
- Unknown μ (mean)
- Unknown σ^2

Welch-Satterthwaite (2-Sample T-test) Assumptions:

-Comparing means of two independent samples -Each sample approx. normal (qqnorm in R) -unknown $\sigma_1{}^2 \neq \sigma_2{}^2$

COLUMBIA UNIVERSITY

1-Sample z-test

Assumptions:

- One sample compared to known value
- Data approx. normal (qqnorm in R)
- Unknown μ (mean)
- Known σ^2

Data Description

-2 samples comparison of means -Independent samples -Unknown σ_1^2, σ_2^2 -Equal variance -Normality Satisfied

Pooled T-test

Assumptions.

- Comparing means of two indep samples
- Each sample approx normal (qqnorm in R)
- unknown $\sigma_1^2 = \sigma_2^2$

2 Sample Inference – Business Application (Lead Scoring)

Pooled T-test $H_0: \mu_1 = \mu_2 \ (\mu_1 - \mu_2 = 0)$ $H_A: \mu_1 > \mu_2 \ (\mu_1 - \mu_2 > 0)$

Where Group1=Think Architecture Group 2=Susperstructures

> t.test(leads\$Revenue~leads\$LeadSource, alternative="greater", paired=FALSE, var.equal=TRUE)

Two Sample t-test

Conclusion

At the alpha=.05 significance level, with a p-value=..6589>.05, we cannot reject the null hypothesis and therefore cannot conclude that the mean revenue from Think! Architecture Is greater than that from Superstructure.

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Further Extension - ANOVA

What Happens When We Want to Compare 3 or more Groups?

Sample 1	Sample 2	Sample 3
<i>x</i> ₁	<i>y</i> ₁	<i>z</i> ₁
<i>x</i> ₂	<i>y</i> ₂	Z ₂
<i>x</i> ₃	<i>y</i> ₃	Z ₃
:	:	:
x_n	y_n	Z _n

Analysis of Variance (ANOVA)

Resource: <u>https://onlinecour</u>ses.science.psu.edu/stat502/

Thank You!

Questions or Comments?

